Positive periodic solutions in neutral nonlinear differential equations
نویسندگان
چکیده
منابع مشابه
Positive Periodic Solutions In Neutral Nonlinear Differential Equations
We use Krasnoselskii’s fixed point theorem to show that the nonlinear neutral differential equation with delay d dt [x(t)− ax(t− τ)] = r(t)x(t)− f(t, x(t− τ)) has a positive periodic solution. An example will be provided as an application to our theorems. AMS Subject Classifications: 34K20, 45J05, 45D05
متن کاملExistence of Positive Periodic Solutions for Neutral Functional Differential Equations
We find sufficient conditions for the existence of positive periodic solutions of two kinds of neutral differential equations. Using Krasnoselskii’s fixed-point theorem in cones, we obtain results that extend and improve previous results. These results are useful mostly when applied to neutral equations with delay in bio-mathematics.
متن کاملPeriodic Solutions for Nonlinear Neutral Delay Integro-differential Equations
In this article, we consider a model for the spread of certain infectious disease governed by a delay integro-differential equation. We obtain the existence and the uniqueness of a positive periodic solution, by using Perov’s fixed point theorem in generalized metric spaces.
متن کاملThree Positive Periodic Solutions to Nonlinear Neutral Functional Differential Equations with Parameters on Variable Time Scales
Using two successive reductions: B-equivalence of the system on a variable time scale to a system on a time scale and a reduction to an impulsive differential equation and by Leggett-Williams fixed point theorem, we investigate the existence of three positive periodic solutions to the nonlinear neutral functional differential equation on variable time scales with a transition condition between ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations
سال: 2007
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2007.1.16